Ville Tulkki 28.2.2018
Väliin törmään somessa viesteihin missä kauhistellaan ydinvoimaloiden vuotavia polttoaineita ja sitä miten välttämättä “edes STUK ei tiedä mistä on kyse”. Ja totta, uutisissa voi olla hyvinkin villejä kuvauksia “mystisistä uraanivuodoista” jotka ovat jatkuneet vuodesta toiseen. Kun lopuksi todetaan fraasinomaisesti että tästä ei ole ollut vaaraa ihmisille tai ympäristölle voi alkaa jo epäluuloisempaa huolestuttamaan. Ydinreaktori, polttoaine vuotaa ja syytä ei varmuudella tiedetä – tämän konteksti voi kyllä olla haastavaa kommunikoida.
Ydinpolttoaine
Ydinvoimaloissa on radioaktiivisten aineiden leviämisen estämiseksi sisäkkäisiä esteitä: polttoainetabletin keraaminen matriisi, suojakuoriputki, suljettu jäähdytepiiri (käytän jatkossa epäeksaktia ilmaisua primääripiiri) sekä voimalan suojarakennus. Kun puhutaan vuotavista polttoainesauvoista, niin suojakuoriputki on vioittunut ja vuotaa radioaktiivisia aineita primääripiirin jäähdytteeseen, ei ympäristöön.

Kevytvesireaktoreiden polttoaine koostuu päistään suljetun zirkoniumpohjaista metallia olevan suojakuoriputken sisään pinotuista keraamisista uraanioksiditableteista. Tabletit ovat vajaan senttimetrin korkuisia ja paksuisia sylintereitä, suojakuoriputket (ja siten polttoainesauvat) taas muutaman metrin pituisia ja noin sentin paksuisia. Putken ja tablettien väliin jää pieni kaasutila, joka on täytetty heliumilla. Sauvat kootaan joko neliö- tai heksahilaiseen nippuun, jossa on välitukilevyjä pitämässä sauvoja paikoillaan, sekä nipun päissä päätylevyt ja käsittelyn mahdollistavia rakenteita.

Esimerkiksi yhdessä Olkiluodon kiehuvesilaitoksen reaktorissa on 500 polttoainenippua. Nykyisin kiehuvesilaitosten polttoainenipuissa on noin 90 polttoainesauvaa per nippu, joten reaktorissa on noin 45 000 polttoainesauvaa. Puhuttaessa vuotavista polttoainesauvoista, usein kyseessä on pieni reikä tai kuluma. Siitä pääsee höyryä sisään polttoainesauvaan ja kaasuraossa olevia aineita (radioaktiiviset fissiotuotteet, aktinidit) huuhtoutuu jäähdytteeseen. Yksittäisen polttoainesauvan vuotaminen ei ole mitenkään epätavallinen tilanne, vuosien varrella niitä on ollut jokaisessa suomalaisessa reaktorissa.


Vuotojen syyt
Mikä sitten vuodon aiheuttaa? Mahdollisia syitä on muutamia, ja tyypillisimmät on esitelty tässä alla. IAEA:n katsauksen mukaan välillä 1994-2006 painevesilaitoksilla tyypillisimmät vuodon syyt olivat välitukilevyn aiheuttama polttoainesauvan hiertymä, vierasesineet ja valmistusvirheet, kun taas kiehuvesilaitoksilla yleisimmät syyt olivat paikallinen korroosio, vierasesineet, valmistusvirheet ja polttoainetabletin ja suojakuoriputken vuorovaikutuksesta aiheutuva jännityskorroosiomurtuma. Osassa polttoainevuodoista juurisyytä ei pystytä määrittämään.


Vierasesineet ovat jäähdytevirtauksen mukana polttoainenippuun kulkeutuneita irtaimia esineitä. Ne voivat esimerkiksi jäädä kiinni johonkin välitukilevyn ja polttoainesauvan väliin, ja pikku hiljaa hiertää polttoainesauvaa. Sauvan pinnalle muodostuu reaktorissa korroosiolta suojaava oksidikerros, ja jos sitä hierretään pois jatkuvasti samasta kohdasta voi siihen kohtaan syntyä reikä. Vierasesineiden kulkeutumista nippuun estetään nipun alaosassa olevalla filtterillä, mutta ne eivät tietenkään täydellisiä suojia ole.
Välitukilevyn hankauman prosessi on vastaava, kovemmasta materiaalista tehty välitukilevy hinkkaa pois suojaavaa oksidikerrosta, jolloin paikallinen korroosio nopeutuu. Näistä pyritään eroon välitukilevyjen suunnittelulla ja materiaalivalinnoilla. Esimerkiksi Loviisan polttoainevaurioiden harvinaistuminen 2000-luvulle tultaessa arveltiin tapahtuneen mahdollisesti sen takia, että välitukilevyt vaihdettiin teräksisistä zirkonium-pohjaisiin.
Siinä missä tasainen oksidikerros muodostaa korroosiota hidastavan pinnan polttoainesauvan päälle, paikalliset olosuhteet saattavat aiheuttaa voimakasta paikallista korroosiota. Näitä on pyritty hallitsemaan sekä suojakuoriputken ja muiden rakennemateriaalin kehittämisellä että primääripiirin vesikemialla.
Polttoainetabletin ja suojakuoriputken vuorovaikutus puolestaan tapahtuu paikallisen tehon noustessa voimakkaasti reaktorin tehonsäädön yhteydessä. Tällöin polttoaineen lämpötila nousee ja polttoainetabletit laajenevat lämpölaajenemisen takia. Ne puskevat viileämpää suojakuoriputkea aiheuttaen siihen jännityksen, ja samalla kemiallisesti agressiivisia aineita voi vapautua suojakuoriputken sisäpinnalle. Jännitys ja korrodoivat aineet voivat yhdessä aiheuttaa suojakuoriputken jännityskorroosiomurtuman. Tätä on pyritty estämään sekä kehittämällä polttoaineita, jotka ovat vähemmän herkkiä jännityskorroosiomurtumalle että reaktorin tehonsäätönopeutta rajoittamalla. Myös polttoainevalmistuksen laadunvarmennuksen parantaminen on auttanut, sillä sylinterimuodosta poikkeavat polttoainetabletit voivat aiheuttaa paikallisia jännityksiä, jotka toimisivat murtuman lähteinä.
Kuten yllä nähdään, syitä yksittäisten sauvojen vuotamiseen on monia ja ne voivat vaihdella samoissa reaktoreissa eri vuosina.
Rikkoutumisen syyn selvittäminen
Polttoainesauvan vuotamisen syy halutaan saada selville jotta niitä voidaan jatkossa välttää, ja tiedetään ettei kyseessä ole mikään systemaattinen vika operoinnissa, laitoksessa tai polttoaineessa. Tässä on vuosien varrella edistytty huomattavasti, sekä itse polttoaineen suunnittelun ja valmistuksen laadunvarmistuksen, että reaktorien operoinnin osalta.
Syyn löytäminen vuotajalle voi olla haastava löytää. Käytetty polttoainesauva säteilee, ja sitä pitää käsitellä asianmukaisesti. Voimalaitoksella pystytään useimmiten vain ainetta rikkomattomiin tarkasteluihin, eli esimerkiksi kuvaamaan niput ja yksittäiset sauvat ja mahdollisesti mittaamaan niiden oksidikerroksen paksuutta pyörrevirtamittauksella. Joidenkin vaurioiden juurisyy kyetään tällä tavoin päättelemään, esimerkiksi löytämällä vierasesine vauriokohdan vierestä tai löytämällä vaurio paikasta joka viittaisi valmistusvirheeseen. Jos juurisyytä ei kyetä näillä tavoin määrittämään, voidaan sauva myös viedä tarkempiin tutkimuksiin. Nämä materiaalia rikkovat tutkimukset tehdään tätä tarkoitusta varta vasten rakennetuissa kuumakammioissa, joissa voidaan käsitellä säteileviä näytteitä. Meitä lähimmät käytetyn polttoaineen käsittelyyn lisensoidut kuumakammiot ovat Ruotsissa.
Seuraukset
Ydinvoimaloissa on järjestelmät, jotka puhdistavat primääripiirin vettä. Primääripiirin veden mukana kulkeutuu normaalioloissakin korroosiotuotteita jotka aktivoituvat reaktorin läpi mennessään. Primääripiirin jäähdytteen aktiivisuustasoa tarkkaillaan. Vuotava sauva päästää radioaktiivisia aineita jäähdytteeseen, ja sen aiheuttama aktiivisuuden muutos havaitaan. Radioaktiivisuuden määrästä ja laadusta voidaan myös tehdä arvioita vuotavien sauvojen lukumäärästä ja myös niiden sijainti reaktorissa voidaan päätellä. Reaktorin ajotavan muuttamisella voidaan minimoida myös päästöt jäähdytteeseen sauvasta ja estää sauvan vuotamisen paheneminen. Usein vuotavan sauvan kanssa voidaan reaktoria ajaa suhteellisen normaalisti suunnitellun käyttöjakson loppuun, jonka jälkeen nippu jossa sauva on poistetaan. Joskus seuraavaan seisokkiin on turhan pitkä aika tai vuotava sauva aiheuttaa liikoja rajoitteita reaktorin operoinnille, ja voidaan päätyä ylimääräiseen seisokkiin vuotavan sauvan poistamiseksi reaktorista. OECD/NEAn katsaus käytäntöihin vuotavien sauvojen tapauksessa tässä.
Ydinturvallisuudesta puhuttaessa ydinpolttoaine muodostaa ensimmäiset fyysiset esteet vaarallisten radionuklidien leviämiselle. Mutta myös määrä ratkaisee, ja tilanteet joissa muutama sauva kymmenistätuhansista vuotaa eivät aiheuta vaaraa ihmisille tai ympäristölle.
Miten vuotava sauva löydetään?
TykkääTykkää
Aktiivisuudesta voi ilmeisesti päätellä vuotavan sauvan palamaa (eri isotooppien suhde), ja ainakin kiehareissa pystytään hieman vuon muotoa säätelemällä ja sen vaikutuksia seuraamalla paikallistamaan vuotavan sauvan nippu. Seisokin aikaan vuotaja löydetään sitten sitä varten tehdyllä laitteella. Esim. tässä on review käytännöistä sekä operoinnin että seisokin aikaan: https://www.oecd-nea.org/nsd/docs/2014/csni-r2014-10.pdf
TykkääTykkää