Vetyä ydinenergialla

Ville Tulkki – 8.11.2020

Vety on kevein alkuaine, joka reaktio hapen kanssa muodostaa vettä ja vapauttaa energiaa. Vetyä käytetään myös monissa kemiallisissa prosesseissa, esimerkiksi lannoitteiden valmistuksessa tarvittava typpi tuotetaan reaktiossa, jossa vety yhdistyy ilman typen kanssa. Yhdistämällä vety hiileen voidaan tuottaa synteettisiä hiilivetyjä, esimerkiksi nestemäisiä polttonesteitä. Vety on käytössä puhdas energian kantaja, mutta haasteeksi tuleekin sen tuottaminen ilman hiilidioksidipäästöjä, sillä nykyään suurin osa maailman vedystä tuotetaan maakaasusta höyryreformoimalla

Vedystä maalaillaan nyt ratkaisua moneen tulevaisuuden vähäpäästöisen energiajärjestelmän haasteeseen, kuten tuuli- ja aurinkovoiman vaihtelevuuden kompensointiin, pitkän aikavälin energiavarastoksi, puhdistamaan lento- ja laivaliikennettä ja moneen muuhun. Vetyyn ollaan panostamassa lähiaikoina niin globaalisti kuin lähialueillammekin. Euroopan komissio arvioi Euroopassa uusiutuvaan vetyyn investoitavan 470 miljardin euron verran seuraavan kolmen vuosikymmenen aikana, ja aivan viime aikoina esimerkiksi Ranska ja Saksa ovat ilmoittaneet panostavansa 6 ja 7 miljardia euroa vedyntuotantoon lähivuosina. EU:n tavoitteena olisi 6 GW elektrolyyserikapasiteettia vuoteen 2025 mennessä ja 40 GW kapasiteettia vuoteen 2030 mennessä.  

Nykyiseen vedyntuotantoon kuluu noin prosentti-pari maailman primäärienergiasta, joten sen muuttaminen vähäpäästöiseksi toisi suunnilleen vastaavat päästövähenykset. Niin laiva- kuin lentoliikennekin tuottavat molemmat pari prosenttia maailman päästöistä (liikenne kokonaisuudessaan neljänneksen), kun taas esimerkiksi terästuotanto, jonka vedyllä voisi puhdistaa, taas kattaa 7-9% fossiilisista polttoaineista tulevista päästöistä. Siirtyminen vähäpäästöiseen vetytalouteen voisikin kattaa suuren osan näistä päästöistä, riippuen tietenkin vetytalouden laajuudesta. Vety on kuitenkin vain energian kantaja, ei sen lähde, ja vesimolekyyli voidaan halkaista monella tapaa. Blogin teeman mukaisesti tässä keskitytään vedyn tuottamiseen ydinenergialla.

Vedyn tuottaminen ydinenergialla

Vedyn tuottamista ydinenergian avulla on tutkittu vuosikymmeniä, ja esimerkiksi kansainvälisen atomienergiajärjestön IAEA:n sivuilla on sekä paljon raportteja kiinnostuneille sekä prosessin mallintamiseen tehtyjä työkaluja. Maailmalla ydinvedyn suuria maita ovat perinteisesti olleet kaasujäähdytteisten reaktoreiden kehittäjät, kuten Yhdysvallat, Japani, ja Saksa. Myös Ranskassa ja Iso-Britanniassa on nyt aloitteita ydinvedyn valmistamiseen.

Ydinenergiaa käytettäisiin veden hajottamiseen vaaditun energian tuottamiseen, joko sähkön, lämmön, tai molempien muodossa. Veden hajottamiseen käytetty teknologia vaikuttaa siihen millaista ydinteknologiaa energian tuottaminen vaatii.

Elektrolyysi

Yksinkertaisimmillaan ydinvetyä voisi tuottaa käyttämällä ydinvoimalan tuottamaa sähköä elektrolyysereissa, joilla vettä hajotetaan vedyksi ja hapeksi matalassa lämpötilassa. Matalan lämpötilan elektrolyysereitä on kaupallisessa käytössä paria eri teknologiaa, mutta käytännössä niillä hajotetaan nestemäisestä vedestä vetyä ja happea sähkövirran avulla. Näiden käyttäminen olisi ydinvoimalan kannalta yksinkertaista, sillä vedyntuotanto olisi ulkoistettu sähköverkon puolelle, eikä laitoksiin tarvitsisi tehdä muutoksia. Demonstraatioprojekteja on valmisteilla useita, esimerkiksi Yhdysvalloissa sekä Isossa-Britanniassa, mutta ne ovat yleisesti ydinvoimaloiden mittakaavoilla pieniä, 1-2 MW, ja enemmän teknologiademoja joilla on erityissovelluksia. Ensimmäiset pienet demot esimerkiksi tuottavat vetyä laitoksen omaan käyttöön (sähkögeneraattoreita jäähdytetään vedyllä), jatkossa suuremman mittaluokan sovellukset olisivat toisia. Esimerkiksi tilanteissa joissa verkossa on ylituotantoa ja sähkön hinta maissa voisi vetylaitoksella tuottaa enemmän vetyä, toisaalta suurimittainen vedyntuotanto toisi uuden myytävän tuotteen sähkön lisäksi ydinvoimaloille. 

Korkean lämpötilan höyryelektrolyysi

Jos vesihöyryä on saatavissa korkeassa lämpötilassa, vetyä voitaisiin tehokkaasti tuottaa kiinteäoksidielektrolyysereillä (solid oxide electrolyzer cell, SOEC). Näillä hyötynä ovat matalan lämpötilan elektrolyysereitä halvemmat materiaalit ja se että osa prosessin vaatimasta energiasta voidaan tuoda lämpönä. Matalan lämpötilan elektrolyysiin verrattuna tässä tulee hyötysuhde-etu, silloin kun molekyylin pilkkomiseen tarvittava energia tulee lämpövoimalaitoksesta. Sähköntuotannossa hyötysuhde on rajoitettu, mutta lämmöntuotannossa ei. Mitä suurempi osuus energiasta saadaan lämpönä, sitä suuremman kokonaishyötysuhteen se mahdollistaa. Vastaava periaate ei kuitenkaan päde tuuli- ja aurinkosähkölle mihin ei vastaavaa termodynaamisen hyötysuhteen rajoitusta liity. Lämmön käyttäminen on eduksi jos reaktioon voidaan käyttää puhtaasti tuotettua lämpöä ulkoisesta lähteestä, kuten esimerkiksi vetyä käyttävästä synteesiprosessista tai sitten vaikka ydinreaktorista. Haasteena on SOECin tarvitsema lämpötila, joka on välillä 550 – 850 C. Näin korkealämpöistä höyryä ei kuitenkaan välttämättä tarvitsisi esimerkiksi ydinreaktorilla tuottaa, sillä suurin energia vesihöyryn tuottamiseen vaaditaan veden kiehuttamiseen. Lämpö otettaisiin ydinlaitoksen sekundääripiiristä tai turbiinin väliotosta, mikä tuo omat selvityksen tarpeensa jos vedyntuotantolaitos olisi kiinteästi yhteydessä ydinvoimalaan. Samanlaisia selvitettäviä kysymyksiä tulee tosin kaikissa ydinlämmön käyttösovelluksissa.

SOECit ovat teknologiana varhaisemmassa vaiheessa kuin matalan lämpötilan elektrolyyserit, mutta demonstraatioprojekteja on käynnissä. Esimerkiksi Yhdysvalloissa julistettiin vastikää projekti ydinvoimalan yhteyteen soveltuvan 250 kW höyryelektrolyyserin testaamisesta, jonka pitäisi mahdollistaa satojen megawattien elektrolyyserisovellus tämän vuosikymmenen loppupuolella. SOECien yhdistämistä korkean lämpötilan ydinreaktoreihin on esitetty yhtenä mahdollisuutena suurimittaiseen puhtaan vedyntuotannon polkuun, mutta tämä vaatisi vielä panostuksia sekä vetyteknologiaan että ydinteknologiaan.

Katalyyttinen termolyysi

Vesi hajoaa vedyksi ja hapeksi myös lämpötilan vaikutuksesta. Ilman katalyyttejä tähän tarvittaisiin monen tuhannen celsiusasteen lämpötiloja, mutta erilaisilla katalyyteilla voidaan vettä hajottaa paljon matalammissa lämpötiloissa. Tarkoituksenmukaisissa kemiallisissa kierroissa katalyytteja voidaan kierrättää prosessissa siten että lopulta prosessiin laitetaan vettä ja energiaa ja ulos saadaan vetyä ja happea. Erilaisia kiertoja on kehitetty niin ydinlämmön kuin keräävän aurinkolämmön hyödyntämiseen. Hyöty termolyysissa olisi se että se käyttäisi suoraan lämpöä sähkön sijaan, ja myös energiatehokkuus olisi korkeampi kuin elektrolyysissä. Haasteena ovat korkeat vaaditut lämpötilat ja vetylaitoksen sijoitus ydinlaitoksen läheisyyteen. Lämpö otettaisiin ydinreaktorista useamman lämmönvaihtimen kautta, ja sen takia itse reaktorissa lämpötilat olisivat korkeammat kuin mitä kemialliset prosessit vaativat.

Hyvin klassinen vedyn tuotannon kemiallinen kierto on rikki-jodikierto, jota on kehitetty hyödyntämään hyvin korkean kaasujäähdytteisen ydinreaktorin tuottamaa lämpöä. Japanissa on kehitetty sekä kemiallista kiertoa että korkean lämpötilan testireaktoria HTTR:ää, tarkoituksena lopulta yhdistää nämä kaksi teknologiaa ydinvedyn tehokasta tuottamista varten. Edellisen vetybuumin aikaan Yhdysvalloissa oli projekti Next Generation Nuclear Plant hyvin korkean lämpötilan ydinreaktorin kehittämiseksi jolla olisi voitu tuottaa vetyä tällä prosessilla, mutta teknologiset haasteet sekä vetykiinnostuksen hiipuminen vesisärötyksellä saatavan maakaasun yleistyttyä ajoivat projektin alas.

Rikki-jodisykli koostuu kolmesta reaktiosta, jossa ensimmäisessä jodi, rikkidioksidi ja vesi reagoivat muodostaen vetyjodidia rikkihappoa, toisessa reaktiossa rikkihappo hajotetaan lämmöllä rikkidioksidiksi, vedeksi ja hapeksi (prosessin tästä vaiheesta saadaan ulos puhdasta happea), ja kolmannessa vetyjodidi hajotetaan lämmöllä vedyksi ja jodiksi (jolloin saadaan prosessista vety). Rikkioksidi, vesi ja jodi kierrätetään taas ensimmäiseen reaktioon, ja tuloksena on suljettu kierto jossa kaikki komponentit ovat joko nestemäisiä tai kaasumaisia. Haasteena on se, että vetyjodidi ja rikkihappo ovat molemmat voimakkaita happoja, ja se että reaktiot vaativat lämpötiloja välillä 120 – 830 astetta Celsiusta. Vastaavasti ydinreaktoria jäähdyttävän kaasun olisi kuumimmillaan oltava luokkaa 950 C. Tällä hetkellä vedyntuotanto tällä syklillä on demonstroitu pienen vetymäärän (30 litraa vetyä tunnissa) noin viikon yhtäjaksoisella tuotannolla. Määrien kasvattaminen teolliseen mittakaavaan vaatii korkeita lämpötiloja ja korroosiota kestävien terästen kehittämistä, ja tämä voi olla pitkää T&K-panostusta vaativa tie. 

Rikki-jodisykli. Kuvan lähde.

Hybridisyklit

Vedyn tuottamiseen on esitetty myös erilaisia hybridisyklejä, jotka pohjaisivat osittain katalyyttisiin reaktioihin ja osittain elektrolyysiin. Näiden hyödyt olisivat elektrolyysiä suurempi lämmön hyödyntäminen ja matalammat lämpötilat kuin puhtailla lämpöprosesseilla. Yksi hybridiprosessi olisi kuparikloorisykli, jossa tosin ylimääräisenä haasteena on se että osa prosessin aineista ovat kiinteässä muodossa. 

(Ydin)vedyn tulevaisuus vielä auki

Vety on mahdollinen keino puhdistaa monia vaikeasti hiilidioksidipäästöistä irrotettavia aloja. Teknologian puolesta puhdasta tai vähäpäästöistä vetyä voidaan tuottaa monin tavoin, ja se ehkä on myös syy miksi nimistä ja leimoista väännetään voimakkaasti kättä. Tässä tekstissä olen käyttänyt termejä vähäpäästöinen tai puhdas vety, joille yksi määritelmä on esimerkiksi Hydrogen Europen tiekartassa. Sielläkin jo “puhdas” on rajattu tarkoittamaan yhden sertifikaatin määritelmää, joten näissä kannattaisi olla tarkkana.

Myös värikoodeja on käytetty, vihreä on vakiintunut uusiutuvalla energialla tuotetulle vedylle, harmaa fossiilisille vedylle, sininen ilmeisesti maakaasuvedylle josta hiili on kaapattu ja varastoitu. Ydinvedyn väriä ei ole missään virallisesti määritelty, viime aikoina yleistynyt väri on pinkki, joka mahdollisesti on saksalaista alkuperää. Toisaalta ydinvety on ajoittain myös yhdessä muiden kestävästi tuotettujen vetyjen kanssa vihreää, ja jossain on ydinvedylle esitetty myös keltaista väriä. Nämä leimat eivät ole tarkkaan määriteltyjä, omasta puolestani väri voisi olla vaikka fuksianpunainen.

EU on valmistellut vetystrategiaa, mutta ainakin virallisen tiedotteen osalta jatkaa perinteisellä ydinvoimavastaisella linjalle. Termi “puhdas vety” on rajattu tarkoittamaan vain uusiutuvilla tuotettua vetyä ja “vähäpäästöinen vety” viittaa fossiilisista polttoaineista tuotettuun vetyyn jonka hiilidioksidipäästöjä on rajoitettu hiilen sieppaamisella ja varastoinnilla. Toisaalta EU:n jäsenmaat kuten Ranska ja Puola ovat pitäneet esillä vedyn tuotantoa myös ydinenergialla, joten tässäkin EU-tason strategia pikemminkin pyrkii rajoittamaan jäsenmaiden ilmastotoimia kuin tukemaan niitä.

Vetytalouteen panostetaan nyt paljon, mutta vähäpäästöisen teknologian käyttöönotto on vasta edessä. Vuonna 2019 elektrolyysereita otettiin käyttöön 25 MW edestä, kun lähivuosikymmenten tarpeissa puhutaan kymmenien ellei satojen gigawattien määristä. Teknologian määrän pitäisi siis kasvaa useilla dekadeilla ennen kuin päästään nyt asetettuihin tavoitteisiin. Esimerkiksi kirjoituksen alussa mainittujen EU:n tavoitteiden saavuttaminen yksinään vaatisi elektrolyysereiden vuotuisen asennusvauhdin satakertaistumista seuraavan muutaman vuoden kuluessa. Lisäksi vety tarvitsee varastointi- ja siirtoinfrastruktuurin, loppukäytön vaatimuksista puhumattakaan. Mutta tällaisia uuden infrastruktuurin rakentamisvauhteja ilmastonmuutos tarvitsee. Toisaalta vetytalouden kanssa kilpailevat myös teollisuuden, lämmityksen ja liikenteen sähköistyminen, joten vaadittavan vedyn määrä tulevaisuudessa jää myös nähtäväksi. Voi myös perustella näkemystä jonka mukaan energiakentässä vety jää marginaaliin ja lähinnä kemianteollisuuden raaka-aineeksi.

Mikä rooli vähäpäästöisellä ydinenergialla tuotetulla vedyllä on tulevaisuudessa on vielä epäselvää. Ydinenergia mahdollistaisi vedyn tuotannon suureen paikalliseen tarpeeseen, kuten palvelemaan teollisuuslaitoksia keskitetysti ilman tarvetta suuriin varastoihin tai sähkön massiiviseen siirtoon. Sekä vedyn tuotannon että käytön osalta on vielä paljon epävarmuuksia. Mutta juuri tuon epävarmuuden takia tarvitsemme myös vaihtoehtoisia teknisesti mahdollisia polkuja kohti vähäpäästöistä yhteiskuntaa, ja ydinenergialla tuotettu vety on yksi näistä tulevaisuuden suurista mahdollisuuksista.

Isoja panostuksia pieniin reaktoreihin

Ville Tulkki – 18.10.2020

Pienreaktoreista on nyt puhuttu muutaman vuoden julkisuudessa suhteellisen taajaan, ja yksi iso kysymys on ollut että milloin ne päätyvät tutkimuksen ja konseptien kehityksen tasolta käyttöönottoon. Kysymys on aiheellinen, sillä konseptien suunnittelu ja hiominen on vielä halpaa, mutta varsinkin ensimmäisen laitoksen rakentaminen voi olla hyvinkin kallista. Monilla aloilla uusien teknologioiden käyttöönottoa ja kansainvälistä markkinointia on joudutettu valtion tuella, ja viime viikkoina on alkanut näyttää siltä että Atlantin toisella puolella tähän ollaan myös todella ryhtymässä. 

Nyt Yhdysvaltojen energiaministeriö on myöntänyt yli miljardin dollarin sitoumuksen ensimmäisen NuScale-voimalaitoksen rakentavalle konsortiolle kymmenelle seuraavalle vuodelle; ilmoittanut panostavansa ensi vaiheessa yhteensä 160 miljoonaa dollaria kahden pienreaktorin kehittäjälle, TerraPowerille ja X-Energylle, tavoitteena voimaloiden käyttöönotto seuraavan seitsemän vuoden aikana (jonka aikana liittovaltio on varautunut panostamaan enimmillään 3,2 miljardia dollaria näihin demonstraatioprojekteihin); ja varautuu uuden materiaalitutkimusreaktorin rakennusprojektin käyntiin laittamiseen yli 200 miljoonalla dollarilla

Nämä summat kuvaavat panostuksia, joita vaaditaan uusien teknologioiden ja uusien voimalaitosten käyttöönottoon. Nämä projektit eivät kuitenkaan ole ponnistaneet tyhjästä, vaan niillä on ollut pitkä ja väliin mutkainenkin historia.

NuScale

NuScale-voimalaitos on ollut pitkään pienreaktorikehityksen kasvot. Kaksitoista reaktorimoduulia rivissä vesialtaassa, jokainen tuottaen höyryä pyörittämään 60 MW sähkötehoista turbiinia. Se pohjautuu 2000-luvun alussa kehitettyyn Multi Application Small Light Water Reactor -konseptiin, jota kaupallistamaan perustettiin NuScale Power -niminen yritys. NuScale sai aikanaan ilmaa siipiensä alle ison rakennustoimiston Fluorin ostettua valtaomistuksen siitä, ja pääsi ensimmäisenä “uuden sukupolven” reaktorina osaksi Yhdysvaltojen viranomaisen NRC:n lisensoinnin modernisaatiota tähtäävään projektiin. NuScale saikin viranomaisen suunnittelusertifikaation tänä syksynä.

Ensimmäinen laitos olisi tarkoitus rakentaa Idahoon tämän vuosikymmenen aikana. Aiemmin energiaministeriö oli ollut mahdollisesti projektissa mukana ostamassa yhden reaktorimoduulin tuotantoa testaus- ja koulutuskäyttöön, mutta sen suunnitelman kaaduttua nyt on ilmeisesti päädytty suorempaan valtion tukeen vähentämään ensimmäisen laitoksen rakentamiseen liittyviä kustannuksia ja riskejä.

Yhdysvallat on ilmeisesti myös lähtenyt tukemaan ydinvoiman vientiä. Yhdysvaltojen kansainvälinen kehitysrahasto muutti tänä vuonna sääntöjään sallimaan ydinvoimaviennin tukemisen, ja on nyt esimerkiksi tehnyt aieilmoituksen NuScalen tukemisesta Etelä-Afrikan ydinvoimaprojektissa. Tällainen valtion tuki rahoitukselle on ollut tärkeä ehto ydinvoimaprojekteille monissa maissa, ja syy sille miksi venäläiset ja kiinalaiset yhtiöt ovat olleet vahvoja ydinvoimaloiden toimittajia monissa maissa.

X-Energy

X-Energyn Xe-100-reaktori on kaasujäähdytteinen kuulakekoreaktori, jossa ydinpolttoaine on pinnoitettuina hippuina (ns TRISO-partikkelit) tennispallon kokoisissa grafiittikuulissa. Jaakko kirjoitti viime vuonna laajemmin itse teknologiasta ja sen historiasta. Xe-100 olisi 80 MW sähkötehoinen laitos joita olisi tarkoitus voida sijoittaa neljän reaktorin paketeissa yhteensä 360 MW tehoiseksi voimalaksi. X-Energyn tarkoituksena on myös rakentaa tehdas valmistamaan TRISO-kuulia, kilpailemaan kansallisesti ainakin BWXT:n kanssa.

Yhdysvalloissa kaasujäähdytteisten reaktoreiden kehityksen edellinen ponnistus sijoittui 2000-luvun alkuun, kun siellä oli päätetty kansallisen neljännen sukupolven reaktorikonseptiksi kaasujäähdytteinen hyvin korkean lämpötilan reaktori joka soveltuisi vedyntuotantoon. Tämä suunnitelma oli kuitenkin hyvin kunnianhimoinen, ja vesisärötysteknologian tuotua markkinoille paljon halpaa maakaasua koko tarve vetytaloudelle katosi – sillä kertaa. Liittovaltio ja yritykset eivät päässeet yhteisymmärrykseen demonstraatiolaitoksen rakentamisen kustannusten jakamisesta, ja lopulta hanke jonka tarkoituksena oli ollut rakentaa toimiva ydinlaitos vuoteen 2021 mennessä päätyi keskittymään TRISO-polttoaineen valmistuksen laadun takaamiseen. Yksi historiikki tästä Next Generation Nuclear Plant (NGNP) -projektista on luettavissa open access -artikkelina. Tätä työtä nyt X-Energy hyödyntää pyrkiessään kaupallistamaan omaa laitoskonseptiaan.

Toisin kuin NGNP, joka pyrki yli 900 C asteen hyödynnettäviin lämpötiloihin vedyn tuottamiseksi katalyyttisella termolyysilla, Xe-100 tuottaa 565-asteista höyryä jota käytetään yleisesti sähköntuotantoon moderneissa konventionaalisten voimalaitosten turbiineissa. Tuo lähes neljänsadan asteen ero hyödynnettävässä lämpötilassa tarkoittaa sitä että NGNP:n kaataneet haasteet materiaalien kestävyydelle ovat paljon pienemmät Xe-100:ssa. Mikä ei tietenkään tarkoita etteikö Xe-100:llakin voisi ilmetä erilaisia mutkia kaupallisen ratkaisun tielle.

TerraPower

Terrapower sai tuen Natrium-nimisen reaktorikonseptinsa demonstroimiseen. Natrium on yhteistyössä GE-Hitachin kanssa kehitettävä natriumjäähdytteinen reaktori, johon on liitetty sulasuolalämpövarasto. Suolaa on käytetty lämpövarastona myös esimerkiksi keräävissä aurinkovoimaloissa, ja Natrium-voimalassa sen tarkoitus olisi mahdollistaa verkon kuormanseuranta ilman että reaktorin tehoa joudutaan säätämään. Koko voimalaitoskonsepti on verrattain uusi, sillä se julistettiin viime elokuussa. Suomalaisittain toistolta kuulostava natriumjäähdytteinen Natrium-reaktori selittyy sillä että englanniksi natrium on “sodium”, joten nimeämisessäkin vain ehkä haettiin halpaa ja helppoa eksotiikan tuntua.

TerraPower on alunperin perustettu kehittämään Travelling Wave -reaktoria, jossa suuressa reaktorissa fissiiliä polttoainetta sekä kuluisi että hyödettäisiin “aalloissa”, mahdollistaen todella pitkän käytön ilman polttoaineen vaihtoa. Tämä kuitenkin on ilmeisesti osoittautunut hyvin haastavaksi ja konsepti on ajan myötä muokkautunut lähemmäksi perinteistä natriumjäähdytteistä hyötöreaktoria. TerraPowerilla oli myös varasuunnitelmana kloridipohjainen sulasuolareaktori.

Natrium-konsortion toinen osapuoli GE-Hitachi on jo pidemmän aikaa pyrkinyt löytämään rahoitusta PRISM-reaktorilleen, joka juontaa juurensa natriumjäähdytteisten hyötöreaktoreiden kehitystyöstä ja 1964 käynnistyneestä EBR-II:sta. PRISMiä pyrittiin mm. Markkinoimaan Britteihin polttamaan heidän ylijäämäplutoniumiaan, ja GEH on solminut monia eri yhteistyösopimuksia eri reaktorikehittäjien kanssa pyrkien hyödyntämään PRISM-kokemustaan. Natrium-reaktoriyhteistyö voinee olla yksi näistä. 

Natrium-konsortiossa on TerraPowerin ja GEHin lisäksi muutama energiayhtiö sekä iso insinööri- ja projektiyhtiö Bechtel.

Versatile Test Reactor

Ydinreaktoreissa lämmöntuotanto pohjautuu neutroneihin (Jaakko on ketjureaktion perusteista ja seurauksista kirjoittanut esimerkiksi täällä) jotka ketjureaktion ylläpitämisen lisäksi vaikuttavat reaktorissa oleviin materiaaleihin, sekä ydinpolttoaineeseen että reaktorin ympärillä oleviin teräsrakenteisiin. Näitä vaikutuksia tutkitaan sitä tarkoitusta varta vasten rakennetuissa materiaalitestausreaktoreissa, joissa on säteilytyspaikkoja ydinpolttoaineiden testaukseen ja rakennemateriaalien säteilytykseen. Viime vuosikymmeninä tarve on kohdistunut lähinnä kevytvesireaktoreiden materiaalitutkimukseen, ja tutkimusreaktorit joissa olisi mahdollisuus simuloida esimerkiksi hyötöreaktoreiden olosuhteita on ajettu alas. Kun moni uusi reaktorikonsepti pohjautuu johonkin muuhun kuin kevytvesiteknologiaan, Yhdysvalloissa on herätty tarpeeseen rakentaa uusi materiaalitestausreaktori näiden tarpeita varten. Tämä on Versatile Test Reactor (VTR), jonka tarkempaa suunnittelua varten Yhdysvaltojen energiaministeriö on hakenut 295 miljoonaa dollaria rahoitusta vuodelle 2021, ja jonka suunniteltaisiin olevan käyttöönotossa vuonna 2026. Muualla vastaavaa koevalmiutta suunnitellaan Venäjälle (MBIR-koereaktori), kun taas Euroopassa uudessakin koereaktorikannassa ollaan pitäytymässä kevytvesiteknologiassa (ranskalainen Jules Horowitz -reaktori). 

Virallinen valinta käytetyn teknologian ja sijoituspaikan suhteen tehdään ensi vuoden lopulla, mutta alustavien puheiden mukaan VTR olisi todennäköisesti natriumjäähdytteinen ydinreaktori Idahossa. Sen varsinaisesta suunnittelusta ja rakentamisesta vastaisi Bechtelin johtama konsortio jossa ovat mukana GE-Hitachi sekä TerraPower. Tällä saattaa olla joitain synergiaetuja aiemmin mainitun Natrium-reaktorin kaupallistamiseen, jota tekee sama konsortio samaan teknologiaan perustuen.

Uuden teknologian käyttöönotto vaatii panostuksia

Tässä kirjoituksessa kuvatut Yhdysvaltojen panostukset uusien ydinreaktorikonseptien käyttöönottoon alkavat olla sitä mittaluokkaa siitä mitä ensimmäiset markkinoille tulevat laitokset vaativat. Kyseessä on teollisuuspoliittinen päätös jolla pyritään tukemaan kansallista teollisuutta ilmastonmuutoksen hillinnän lisäksi. Varmaa mikään ei tietenkään ole, sillä projektit vaativat sekä tulevien hallintojen että yksityisten yritysten pitkäaikaista sitoumusta. Vastaavanlaisia panostuksia tehtäneen myös esimerkiksi Venäjällä ja Kiinassa, mutta siellä ydinenergiatoimijoiden ollessa valtiollisia yhtiöitä liikkuvat rahasummat eivät ole välttämättä niin selviä. Kanada puolestaan tarjoaa eri kehittäjille joustavaa lisensointiprosessia sekä testialuetta koereaktoreille.

Euroopassa kansallisia pienreaktoriprojekteja on Ranskassa sekä Briteissä. Ranskan koronaelvytyspakettiin suunnitellaan 470 miljoonan euron osuutta ydinvoimalle josta iso osa olisi kohdistettu ranskalaisen NuWard-pienreaktorin kehittämiseen. Briteissä keskustellaan mahdollisesti 1,5-2 miljardin punnan panostuksesta Rolls Roycen vetämän konsortion pienreaktorin kaupallistamiseen. Toisaalta EU-tasolla ei ole osattu päättää edes siitä onko ydinvoima osa kestävää tulevaisuutta.

Noita summia kun katsoo voi myös kysyä, miksi lähteä edes pohtimaan suomalaista kaukolämpöreaktoria, meillä tuskin koskaan kun olisi odotettavissa moisia panostuksia julkista rahaa aiheeseen. Yhtäältä kyse on eri ydinreaktoreiden kunnianhimosta, siinä missä kansainväliset laitokset joita on kuvattu yllä ovat järjestään lämpöteholtaan gigawattiluokassa ja vaativat materiaaleja joita nykyisissä laitoksissa ei ole (tai jopa suljettua polttoainekiertoa), eurooppalaiseen verkkoon sopiva kaukolämpöreaktorilaitos olisi lämpöteholtaan kymmenistä muutamaan sataan megawattiin, tuottaisi vain kuumaa vettä, ja voitaisiin tehdä nykyisin käytetyin materiaalein. Eli kyseessä olisi paljon yksinkertaisempi tapaus kuin yksikään kansainvälisistä reaktoreista. Kuvatut kansainväliset reaktorit eivät myöskään ole suunniteltuja kaukolämpökäyttöön, vaan pääasiassa sähkön tai korkean prosessilämmön tuotantoon. Kaukolämmön tuotantoa pidetään myös helposti niche-markkinana, joka ei niin suurten kansainvälisten toimijoiden huomion piirissä ole. Käynnissä olevalla suunnittelutyöllä voimme myös tuoda esille paikalliset tarpeet puhtaan energian tuotannolle, kun harvemmin muut sitä puolestamme tekevät.

Ydinvoiman kuormanseuranta

Ville Tulkki – 27.6.2018

Suomen Ilmastopaneeli julkaisi 21.6. muistion paneelin näkemyksistä pitkän aikavälin päästövähennystavoitteen asettamisessa huomioon otettavista seikoista. Tällaiset ilmaston parissa vaikuttavien tahojen lausunnot ovat ammatin puolesta mielenkiintoisia, sillä varsinkin aiemmin ydinvoima on ollut vaikea aihe. Joko sitä ei ole mainittu sanallakaan tai sitten hyvin anteeksipyydellen. Mutta muutosta on ilmassa, ja Ilmastopaneelikin tunnustaa ydinvoiman roolin tulevaisuudessa. Sana ydinvoima esiintyy muistiossa kolmasti: ensimmäiseksi huomiossa että Suomelle hyvä verrokkimaa on Ruotsi sähköntuotantopaletin samankaltaisuuden vuoksi, ja toiset kaksi seuraavassa kappaleessa (muistion sivu 7):

Ilmastopolitiikan tueksi tuotetut vähähiilistä energianjärjestelmää koskevat skenaariot ovat vanhentuneet ja konservatiiviset. Ne olisi syytä uudistaa pikimmiten. Esimerkiksi käytetyt energian tuotantoa ja energiajärjestelmää koskevat kuvaukset ja laskelmat tulee uudistaa. Tulevia muutossuuntia edustavat muun muassa kaukolämpöön liittyvät uudet ratkaisut, kuten hajautettu lämmöntuotanto, tai lämmön tuotannon sähköistyminen. Myös koko sähköntuotantorakenne muuttuu. Paitsi että vaihtelevan tuotannon osuus kasvaa edelleen myös ydinvoiman rooli kasvaa merkittävästi. Jo nyt kirjallisuus antaa viitteitä siihen, että ydinvoiman tuotanto voi joustaa ja täten mahdollisesti jouduttaa tuuli- ja aurinkovoiman markkinoille tuloa. Tulevissa matalahiilisen yhteiskuntaan liittyvissä tiekarttatarkasteluissa on painotettava aiempaa enemmän uusien teknologioiden valmistumisen ja käyttöönoton aikataulun realistisuuden arviointia erityisesti Suomen olosuhteissa. Erillisen tarkastelun ansaitsee innovaatioiden rooli tulevaisuudessa: energiajärjestelmän syvällinen murros, raskaan teollisuuden, erityisesti teräksen ja sementin valmistuksen, saaminen hiilivapaaksi, ruuan tuotannon vallankumous, asumisen ja liikkumisen uudet ekologiset ratkaisut.

Itse olen työssäni viime aikoina pyrkinyt sekä selvittämään ydinvoiman mahdollisuuksia nimenomaan kaukolämmön ja teollisuuden lämmönkäytön tuottamiseen ydinvoimalla sekä jakamaan tästä tietoa. Tästä jatkossa enemmän, sillä vaikka ylläolevassa Ilmastopaneeli roolittaa ydinvoiman vain sähköntuotannon osaksi niin sillä on paljon annettavaa myös sähköntuotannon ulkopuolella. Nämä vain eivät ole tunnistettuja esimerkiksi juuri Ilmastopaneelin vanhentuneiksi kritisoimissa skenaarioissa. Esimerkiksi kansainvälisen energiajärjestön IEAn Energy Technologies Perspectives 2017 toteaa ydinvoiman lämpökäytöstä että se on hyvin lupaava mahdollisuus tehokkaisiin ilmastotoimiin. Sitä vain ei ole otettu IEAn skenaarioissa huomioon koska sille ei ole malleja. Mutta jätän nyt tämän aiheen tulevaan kirjoitukseen, sillä haluaisin kommentoida Ilmastopaneelin toteamusta

Jo nyt kirjallisuus antaa viitteitä siihen, että ydinvoiman tuotanto voi joustaa 

ja sen implikaatioita.

Usein kuulee väitettävän että ydinvoima on “joustamatonta” sähköntuotantoa. Tällä annetaan ymmärtää että jatkossa ydinvoiman rooli on enemmän tien tuke vaihtelevatuottoisten uusiutuvien lisäämiselle eikä soveltuva tulevaisuuden sähköverkkoon. Tällaiset väitteet ovat ongelmallisia sekä raamituksen vuoksi että sen takia että se nyt vain ei pidä paikkaansa. Raamitus on ongelmallinen sillä voi kysyä mikä on tavoitteemme, ilmastonmuutoksen hillintä vai uusiutuvan energiantuotannon osuus. Ja taas teknisesti ydinvoimalat on voitu rakentaa – ja monesti rakennettukin – joustavaa sähköntuotantoa varten. Joten ilmastonmuutoksesta huolestuneelle insinöörille on hyvin vaikeaa ymmärtää miksi ihmeessä tällaista väitettä levitetään.

Silloin kun nyt käynnissä olevia ydinvoimaloita suunniteltiin ja rakennettiin, uskottiin laajalti että ydinvoimasta voisi tulla valtaosa käyttämästämme sähköstä. Tämän vuoksi ydinvoimaloihin suunniteltiin hyvät kuormanseurantaominaisuudet. Kovin monessa maassa tätä ydinvoiman suurta osuutta ei koskaan saavutettu, ja verkon tasapainottamiseen käytetään joko vesivoimaa tai kalliimpia polttoaineita käyttäviä laitoksia. Tämä kuitenkaan ei ole ollut mahdollista Ranskassa, jossa ydinvoimalla tuotetaan noin 80% sähköstä. Ranskassa ydinvoimalat rutiininomaisesti sekä osallistuvat verkon tasapainottamiseen että laskevat tehojaan verkon kuorman laskiessa esimerkiksi viikonloppuisin.

Ranskalainen ydinvoima
Ranskalaisen ydinvoimalan teho kuormanseurantasyklin aikana. Lähde OECD/NEA.

Saksalainen ydinvoima
Saksalaisten ydinvoimaloiden kuormanseurantaa yhden vuorokauden aikana. Lähde OECD/NEA.

Käytännössä ydinvoimaloiden kuormanseuranta tehdään nykyisin liikuttamalla neutroneita kaappaavia säätösauvoja (paine- ja kiehuvesilaitokset) tai reaktorin läpi virtaavan veden määrää muuttamalla (kiehuvesilaitokset). Koska säätösauvat poistavat neutroneita reaktorista, vaikuttaa tämä säätö reaktorin tehoprofiiliin tehden siitä epäoptimaalisen. Säätöön käytetään niin kutsuttuja harmaita sauvoja, jotka eivät absorboi niin voimakkaasti neutroneita kuin reaktorin sulkemiseen käytettävät mustat sauvat. Säätösauvojen valintakin on eri tavoitteiden välistä kaupankäyntiä: monimutkaisilla säätökuvioilla voidaan saada tehokas reaktorin säätö – mutta sillä hinnalla että reaktorin säätö muuttuu monimutkaisemmaksi.

Ydinreaktorin tehoa muuttaessa täytyy ottaa erinäisiä reunaehtoja huomioon. Ydinreaktorin tehon säätö on oma taiteenlajinsa takaisinkytkentöineen. Polttoaineessa ei teho saa muuttua liian nopeasti liian paljon tai vaarana on yksittäisten polttoainesauvojen hajoaminen. Pitkäaikaiset pysymiset eri tehotiloilla ehdollistavat polttoainetta kulloinkin pidettyyn tilaan, ja niiden jälkeen muutokset pitää tehdä hitaasti. Myös tehon muuttuessa tulee varmistaa ettei minkään nipun kohdalla mennä kalvokiehuntaan. Tämä on tila jossa kuuman polttoainesauvan ympärille muodostuu höyrykalvo joka toimii lämmöneristeenä, täten nostaen suojakuoriputken ulkolämpötilaa. Mikään näistä ei ole este kuormanseurannalle, vaan ne ovat reaktorin ajon suunnittelussa huomioitavia asioita.

Viimeisen vuoden aikana on julkisuudessa ollut kirjoituksia siitä miten ydinvoimalat eivät todennäköisesti sovellu kuormanseurantaan. Tästä esimerkkinä on annettu Brokdorfin ydinvoimalassa tapahtunutta useamman polttoainenipun voimakasta oksidoitumista, jonka syytä ei ole toistaiseksi julkaistu. Kansainvälisessä mediassa on siteerattu Saksan viranomaisen tukiorganisaatiota, jonka mukaan kuormanseurantaoperaation vaikutusta oksidoitumiseen ei voi sulkea pois, ja saksalaisen ministerin päätelmää että tästä seuraa se ettei ydinvoima sovi kuormanseurantaan. Nämä väitteet kuitenkin jättävät huomiotta sen, että kuormanseurantaa on tehty ydinvoimalla jo vuosikymmeniä. Kuten aiemmin kirjoitin, yksittäisiin polttoainevaurioihin voi olla monia syitä, eikä ole tavatonta että tapahtuneen juurisyytä selvitetään pitkään. Kuormanseurannan lisäksi Brokdorfissa oli muutama vuosi aiemmin nostettu reaktorin tehoa, Saksassa oli uraaniveron takia ajettu reaktoreita hyvin epätavallisesti, joskus virheitäkin sattuu. Mikä tahansa näistä voi olla syy tälle yksittäistapahtumalle – ennen virallista lausuntoa emme tiedä.

Ydinvoiman kuormanseuranta on tehtävissä. Sen haluttavuus riippuu muista sähköverkon ja muiden tuotantomuotojen reunaehdoista. Nykyisellään sitä tehdään joko kun vaihtoehtoja ei ole (Ranska) tai poliittisilla päätöksillä vaikutetaan voimallisesti sähköntuotantoon (Saksa). Tällä hetkellä kukaan ei voine täysin varmasti sanoa millainen tulevaisuus sähköntuotannon suhteen on. Suomen Ilmastopaneelin ajatus siitä että ydinvoiman sähköntuotannon joustaminen mahdollistaa suuremman vaihtelevatuottoisten uusiutuvien osuuden on ajatuksena yleinen, mutta jättää huomiotta ehkä tärkeimmän yksityiskohdan: mikä on tavoitteena? Jos tavoitteena on vain uusiutuvien osuuden maksimointi, vielä joustavampia ja halvempia tapoja on kuten kaasumoottorit. Tosin tällöin joko joudutaan nojaamaan paljon fossiilisiin polttoaineisiin tai yli-investoimaan uusiutuvien kapasiteettiin – silti pitäen varalla polttoon pohjautuvaa varakapasiteettia jota vain ei käytetä. Viimeisin oli kyseessä Wärtsilän viime viikkoina paljon puhutussa selvityksessä, jossa lopulta Wärtsilän skenaario pohjautui tuulivoiman tuotantoylimäärään ja fossiilikapasiteetin varuillaoloon. Oletukset hinnoista olivat osittain kyseenalaisia, ja julistetut erot päästöissä juontuivat siitä että tuulivoimaskenaariossa oletettiin lämmityksen hoituvan lämpöpumpuilla ja ydinvoimaskenaariossa turpeella. Missä nyt ei ole mitään mieltä jos vain sähköntuotannon vaihtoehtoja vertaillaan.

Jos kuitenkin otamme ilmastonmuutoksen tosissaan, niin sähköntuotannossa ei voida nojata fossiilisiin polttoaineisiin. Tällöin useiden tutkimusten mukaan ydinvoima on oleellinen osa tuotantopalettia. Vaikka yksittäisten voimaloiden tuottaman sähkön hintavertailussa tuulivoima on nykyisellään halvinta uutta tuotantokapasiteettia, puhuttaessa koko systeemistä niin uusiutuvilla kuin ydinvoimallakin on nouseva systeemikustannus ja siten jonkinlainen kannattava osuus järkevästä kokonaisuudesta. Kuinka suuri osa riippuu myös paikallisista oloista kuten sähköverkosta sekä vesivoiman ja muiden sähköntuotantomuotojen saatavuudesta.

Jopa viime vuosina usein täysin uusiutuvaa energiantuotantoa perustelemaan käytetty Lappeenrannan teknillisen yliopiston 100%Renewable Finland 2050 -tutkimus näyttää ydinvoiman systeemihyödyt. LUTin selvitys olettaa voimakkaasti alenevat uusiutuvien ja varastoinnin hinnat ja nousevat ydinvoiman hinnat, ja silti selvityksessä oletetuilla vuonna 2050 rakennettavalla paletilla täysin uusiutuva verkko on vain hieman halvempi kuin verkko jossa on ydinvoimaa mukana. Hinta- ja teknologiaoletuksia ei varioitu, joten vuoteen 2050 ennustettaessa tulevia epävarmuuksia ei käsitelty. Vaikka olettaisimme mallinnuksen oletukset oikeiksi, niin sen perusteella jos haluamme toimia ennen vuotta 2050 ilmastonmuutoksen hillitsemiseksi on ydinvoimalla roolinsa osana energiapalettia. Suurempi kysymys onkin miksi kyseistä julkaisua käytetään usein perustelemaan tämänhetkistä politiikkaa – siihen vetoavien olisi hyvä edes tutustua auktoriteettina käyttämäänsä tutkimukseen.

Joka tapauksessa on hyvin positiivista että Suomen Ilmastopaneeli on muistiossaan todennut sekä uusiutuvien energianlähteiden että ydinvoiman yhä kasvavan roolin ilmastonmuutoksen hidastamisessa. Yksityiskohdilla on kuitenkin myös merkitystä. Ydinvoiman sähköntuotannon joustavuus tai joustamattomuus on yksi aihe josta on ollut paljon porua mutta vähän villoja – varsinkin kun se on niin haluttaessa teknisesti toteutettavissa.

Rikkoutuvista polttoainesauvoista

Ville Tulkki 28.2.2018

Väliin törmään somessa viesteihin missä kauhistellaan ydinvoimaloiden vuotavia polttoaineita ja sitä miten välttämättä “edes STUK ei tiedä mistä on kyse”. Ja totta, uutisissa voi olla hyvinkin villejä kuvauksia “mystisistä uraanivuodoista” jotka ovat jatkuneet vuodesta toiseen. Kun lopuksi todetaan fraasinomaisesti että tästä ei ole ollut vaaraa ihmisille tai ympäristölle voi alkaa jo epäluuloisempaa huolestuttamaan. Ydinreaktori, polttoaine vuotaa ja syytä ei varmuudella tiedetä – tämän konteksti voi kyllä olla haastavaa kommunikoida.

Ydinpolttoaine

Ydinvoimaloissa on radioaktiivisten aineiden leviämisen estämiseksi sisäkkäisiä esteitä: polttoainetabletin keraaminen matriisi, suojakuoriputki, suljettu jäähdytepiiri (käytän jatkossa epäeksaktia ilmaisua primääripiiri) sekä voimalan suojarakennus. Kun puhutaan vuotavista polttoainesauvoista, niin suojakuoriputki on vioittunut ja vuotaa radioaktiivisia aineita primääripiirin jäähdytteeseen, ei ympäristöön.

20814654546_3a29f6a4ee_o
Ydinvoimalan periaatepiirros. Fyysiset leviämisesteet ovat polttoainesauvat (reaktorissa), primääripiiri ja suojarekennus. Kuvan lähde.

Kevytvesireaktoreiden polttoaine koostuu päistään suljetun zirkoniumpohjaista metallia olevan suojakuoriputken sisään pinotuista keraamisista uraanioksiditableteista. Tabletit ovat vajaan senttimetrin korkuisia ja paksuisia sylintereitä, suojakuoriputket (ja siten polttoainesauvat) taas muutaman metrin pituisia ja noin sentin paksuisia. Putken ja tablettien väliin jää pieni kaasutila, joka on täytetty heliumilla. Sauvat kootaan joko neliö- tai heksahilaiseen nippuun, jossa on välitukilevyjä pitämässä sauvoja paikoillaan, sekä nipun päissä päätylevyt ja käsittelyn mahdollistavia rakenteita.

Nuclear_fuel_element
Ydinpolttoaine-elementti. Sauvat on koottu neliöhilaan jota pidetään koossa välitukilevyillä. Kuva on ydinkäyttöisen rahtilaivan NS Savannahin polttoainenipusta. Kuvan alkuperäinen lähde.

Esimerkiksi yhdessä Olkiluodon kiehuvesilaitoksen reaktorissa on 500 polttoainenippua. Nykyisin kiehuvesilaitosten polttoainenipuissa on noin 90 polttoainesauvaa per nippu, joten reaktorissa on noin 45 000 polttoainesauvaa. Puhuttaessa vuotavista polttoainesauvoista, usein kyseessä on pieni reikä tai kuluma. Siitä pääsee höyryä sisään polttoainesauvaan ja kaasuraossa olevia aineita (radioaktiiviset fissiotuotteet, aktinidit) huuhtoutuu jäähdytteeseen. Yksittäisen polttoainesauvan vuotaminen ei ole mitenkään epätavallinen tilanne, vuosien varrella niitä on ollut jokaisessa suomalaisessa reaktorissa.

Näyttökuva 2018-2-25 kello 21.02.14
Loviisan ydinreaktoreissa olleet vuotavat sauvat vuosittain. Kuvan lähde.

 

Näyttökuva 2018-2-25 kello 21.01.49
Olkiluodon ydinreaktoreissa olleet vuotavat sauvat vuosittain. Kuvan lähde.

Vuotojen syyt

Mikä sitten vuodon aiheuttaa? Mahdollisia syitä on muutamia, ja tyypillisimmät on esitelty tässä alla. IAEA:n katsauksen mukaan välillä 1994-2006 painevesilaitoksilla tyypillisimmät vuodon syyt olivat välitukilevyn aiheuttama polttoainesauvan hiertymä, vierasesineet ja valmistusvirheet, kun taas kiehuvesilaitoksilla yleisimmät syyt olivat paikallinen korroosio, vierasesineet, valmistusvirheet ja polttoainetabletin ja suojakuoriputken vuorovaikutuksesta aiheutuva jännityskorroosiomurtuma. Osassa polttoainevuodoista juurisyytä ei pystytä määrittämään.

Näyttökuva 2018-2-17 kello 21.36.58
Painevesilaitosten vuotavia sauvoja sisältävien polttoainenippujen lukumäärä ja syyt Euroopassa Ranskan ulkopuolella. Kuvan lähde.

 

Näyttökuva 2018-2-17 kello 21.36.24
Kiehuvesilaitosten vuotavia sauvoja sisältävien polttoainenippujen lukumäärä ja syyt Euroopassa. Kuvan lähde.

Vierasesineet ovat jäähdytevirtauksen mukana polttoainenippuun kulkeutuneita irtaimia esineitä. Ne voivat esimerkiksi jäädä kiinni johonkin välitukilevyn ja polttoainesauvan väliin, ja pikku hiljaa hiertää polttoainesauvaa. Sauvan pinnalle muodostuu reaktorissa korroosiolta suojaava oksidikerros, ja jos sitä hierretään pois jatkuvasti samasta kohdasta voi siihen kohtaan syntyä reikä. Vierasesineiden kulkeutumista nippuun estetään nipun alaosassa olevalla filtterillä, mutta ne eivät tietenkään täydellisiä suojia ole.

Välitukilevyn hankauman prosessi on vastaava, kovemmasta materiaalista tehty välitukilevy hinkkaa pois suojaavaa oksidikerrosta, jolloin paikallinen korroosio nopeutuu. Näistä pyritään eroon välitukilevyjen suunnittelulla ja materiaalivalinnoilla. Esimerkiksi Loviisan polttoainevaurioiden harvinaistuminen 2000-luvulle tultaessa arveltiin tapahtuneen mahdollisesti sen takia, että välitukilevyt vaihdettiin teräksisistä zirkonium-pohjaisiin.

Siinä missä tasainen oksidikerros muodostaa korroosiota hidastavan pinnan polttoainesauvan päälle, paikalliset olosuhteet saattavat aiheuttaa voimakasta paikallista korroosiota. Näitä on pyritty hallitsemaan sekä suojakuoriputken ja muiden rakennemateriaalin kehittämisellä että primääripiirin vesikemialla.

Polttoainetabletin ja suojakuoriputken vuorovaikutus puolestaan tapahtuu paikallisen tehon noustessa voimakkaasti reaktorin tehonsäädön yhteydessä. Tällöin polttoaineen lämpötila nousee ja polttoainetabletit laajenevat lämpölaajenemisen takia. Ne puskevat viileämpää suojakuoriputkea aiheuttaen siihen jännityksen, ja samalla kemiallisesti agressiivisia aineita voi vapautua suojakuoriputken sisäpinnalle. Jännitys ja korrodoivat aineet voivat yhdessä aiheuttaa suojakuoriputken jännityskorroosiomurtuman. Tätä on pyritty estämään sekä kehittämällä polttoaineita, jotka ovat vähemmän herkkiä jännityskorroosiomurtumalle että reaktorin tehonsäätönopeutta rajoittamalla. Myös polttoainevalmistuksen laadunvarmennuksen parantaminen on auttanut, sillä sylinterimuodosta poikkeavat polttoainetabletit voivat aiheuttaa paikallisia jännityksiä, jotka toimisivat murtuman lähteinä.

Kuten yllä nähdään, syitä yksittäisten sauvojen vuotamiseen on monia ja ne voivat vaihdella samoissa reaktoreissa eri vuosina.

Rikkoutumisen syyn selvittäminen

Polttoainesauvan vuotamisen syy halutaan saada selville jotta niitä voidaan jatkossa välttää, ja tiedetään ettei kyseessä ole mikään systemaattinen vika operoinnissa, laitoksessa tai polttoaineessa. Tässä on vuosien varrella edistytty huomattavasti, sekä itse polttoaineen suunnittelun ja valmistuksen laadunvarmistuksen, että reaktorien operoinnin osalta.

Syyn löytäminen vuotajalle voi olla haastava löytää. Käytetty polttoainesauva säteilee, ja sitä pitää käsitellä asianmukaisesti. Voimalaitoksella pystytään useimmiten vain ainetta rikkomattomiin tarkasteluihin, eli esimerkiksi kuvaamaan niput ja yksittäiset sauvat ja mahdollisesti mittaamaan niiden oksidikerroksen paksuutta pyörrevirtamittauksella. Joidenkin vaurioiden juurisyy kyetään tällä tavoin päättelemään, esimerkiksi löytämällä vierasesine vauriokohdan vierestä tai löytämällä vaurio paikasta joka viittaisi valmistusvirheeseen. Jos juurisyytä ei kyetä näillä tavoin määrittämään, voidaan sauva myös viedä tarkempiin tutkimuksiin. Nämä materiaalia rikkovat tutkimukset tehdään tätä tarkoitusta varta vasten rakennetuissa kuumakammioissa, joissa voidaan käsitellä säteileviä näytteitä. Meitä lähimmät käytetyn polttoaineen käsittelyyn lisensoidut kuumakammiot ovat Ruotsissa.

Seuraukset

Ydinvoimaloissa on järjestelmät, jotka puhdistavat primääripiirin vettä. Primääripiirin veden mukana kulkeutuu normaalioloissakin korroosiotuotteita jotka aktivoituvat reaktorin läpi mennessään. Primääripiirin jäähdytteen aktiivisuustasoa tarkkaillaan. Vuotava sauva päästää radioaktiivisia aineita jäähdytteeseen, ja sen aiheuttama aktiivisuuden muutos havaitaan. Radioaktiivisuuden määrästä ja laadusta voidaan myös tehdä arvioita vuotavien sauvojen lukumäärästä ja myös niiden sijainti reaktorissa voidaan päätellä. Reaktorin ajotavan muuttamisella voidaan minimoida myös päästöt jäähdytteeseen sauvasta ja estää sauvan vuotamisen paheneminen. Usein vuotavan sauvan kanssa voidaan reaktoria ajaa suhteellisen normaalisti suunnitellun käyttöjakson loppuun, jonka jälkeen nippu jossa sauva on poistetaan. Joskus seuraavaan seisokkiin on turhan pitkä aika tai vuotava sauva aiheuttaa liikoja rajoitteita reaktorin operoinnille, ja voidaan päätyä ylimääräiseen seisokkiin vuotavan sauvan poistamiseksi reaktorista. OECD/NEAn katsaus käytäntöihin vuotavien sauvojen tapauksessa tässä.

Ydinturvallisuudesta puhuttaessa ydinpolttoaine muodostaa ensimmäiset fyysiset esteet vaarallisten radionuklidien leviämiselle. Mutta myös määrä ratkaisee, ja tilanteet joissa muutama sauva kymmenistätuhansista vuotaa eivät aiheuta vaaraa ihmisille tai ympäristölle.

Ydinvoimaviestinnän vaikeudesta – kolikon kääntöpuoli

Alkukipinä tämän blogin perustamiseen tuli useammasta uutisesta, joissa ydinvoimasta esitettiin hyvinkin kyseenalaisia väitteitä. Usein tässä on taustalla tarve tehdä repäiseviä otsikoita, ja teknisen aiheen kanssa sorrutaan helposti liioitteluun. Myös kolikon toinen puoli on tullut tutuksi viime aikoina.

Pienet modulaariset reaktorit, tai tuttavallisemmin pienreaktorit tai SMRt (sanoista Small Modular Reactor), ovat olleet viimeisen muutaman kuukauden aikana tapetilla julkisuudessa. Siinä missä ne ovat olleet alalla “se seuraava juttu” matalalla mutta kasvavalla intensiteetilla viimeisen vuosikymmenen, ei niitä suomalaisessa mediassa ole näkynyt ennen viime syksyä. Silloin sekä media että uudet kaupunginvaltuustot alkoivat kiinnostua “uudesta ydinvoimasta.” Ydinvoiman käytön selvittämiseen velvoittavien valtuustoaloitteiden – tätä kirjoittaessa Helsingissä, Espoossa, Kirkkonummella, Nurmijärvellä ja Turussa – ja niihin liittyvän uutisoinnin myötä voi hyvin alkaa uskoa että SMRt ovat ratkaisu kaikkeen. Mikä ei tietenkään pidä paikkaansa.

Teimme viime vuonna VTT:n sisäisessä projektissa selvityksiä pienten modulaaristen reaktoreiden mahdollisista käyttökohteista teknistaloudellisista lähtökohdista. Minkälaisia reaktoreita on lähiaikoina tulossa markkinoille, kuinka todennäköisiksi arvioimme reaktorivalmistajien lupaukset, mitä käyttökohteita näillä pienreaktoreilla olisi. Ajankohtaisimmat tuloksista julkaisimme tiedotteella kun samaan aikaan kaupunginvaltuustojen aloitteita alkoi ilmaantua. Tämän myötä itsellenikin tuli useampi haastattelu, joiden myötä aloin pohtia kuinka huomiotaloudessa elämmekään.

Tutkijan on paha mennä syyttämään vain mediaa tutkimustulosten nostamasta hypestä. Tutkimusten mukaan nimittäin hypen alkuperä on usein jo tutkimuslaitosten tai lehtien tiedotteista lähtöisin. Haastatteluissa usein pyritään löytämään ne mielenkiintoiset asiat, arkisten ja tylsien haasteiden ja varausten jäädessä vähemmälle, joten ylilyönnit ja lentävät kielikuvat ovat inhimillisiä. Pienreaktoreiden osalta hypeä ja mielikuvia löytyy, mutta niillä on myös paljon annettavaa työssä kohti hiilineutraalia yhteiskuntaa. Joten miten löytää se punainen lanka? Tässä blogissa on tarkoitus kommentoida ajankohtaisista aiheista ja taustoittaa teknisiä yksityiskohtia, joten eiköhän pienreaktoreista ole jatkossa kirjoitettavaa. Mutta tässä lyhyesti perusteet siitä mistä niissä on kyse. Teknisiä yksityiskohtia on tarkoitus laajentaa myöhemmissä blogikirjoituksissa.

Pienet modulaariset ydinreaktorit

Kyseessä on sateenvarjotermi heterogeeniselle joukolle ydinreaktoreita, jotka ovat “pieniä” ja sarjavalmisteisia. Pienuus on katsojan silmässä, sillä pääosin kyseessä ovat teollisuuslaitokset kokoiset voimalat joihin komponentit (tai moduulit) pystyttäisiin valmistamaan tehtaalla ja kokoamaan paikan päällä. Suunnitteilla on myös kokonaisuudessaan rekan tai lentokoneen kyytiin mahtuvia mikroreaktoreita, mutta nämä soveltuisivat hintansa puolesta lähinnä kaukaisten yhdyskuntien tai kaivosten voimanlähteiksi paikkoihin, joihin ei ole vedetty sähköverkkoa.

Modulaarisuus tarkoittaa mahdollisimman pitkälle vietyä tehdasvalmistusta ja eri osien asennusta paikan päällä. Joissain tapauksissa kyse on myös siitä, että yhdessä voimalassa on monta reaktoria. Tämä voi olla taloudellinen tapa luoda juuri tarpeeseen sopivan kokoinen voimala.

Pienreaktorit ovat kaikki ydinreaktoreita, joissa energia tuotetaan hajoavien atomiytimien ketjureaktiolla. Eri teknologiat ovat laajasti edustettuina nyt suunnitteilla olevissa konsepteissa. Ydinreaktori vaatii tavan ylläpitää ketjureaktiota sekä tavan kuljettaa tuotettu lämpö pois. Ketjureaktio vaatii joko korkeaa fissiilin isotoopin U235:n väkevöintiastetta tai tuotettujen neutronien hidastamista elastisin törmäyksin kevyiden atomiydinten kanssa (veden vety, raskaan veden deuterium, grafiitin hiili). Reaktori voidaan jäähdyttää vedellä, kaasulla (helium tai hiilidioksidi), sulalla metallilla tai suoloilla. Yhdistelemällä tapoja ylläpitää ketjureaktiota ja jäähdyttää reaktori saadaan eri ydinreaktoreiden peruskonseptit. Nykyään yleisin on vesijäähdytteinen ja -hidasteinen kevytvesireaktori, mutta suurinta osaa muistakin yhdistelmistä on vähintään kokeiltu historian aikana.

Hyödyt ja haasteet

Pienreaktoreiden hyviä puolia sanotaan olevan sarjatuotannon edut, mahdollisuus toteuttaa turvallisuuden takaaminen yksinkertaisesti, monipuoliset käyttömahdollisuudet ja skaalautuvuus tarvetta vastaavaksi.

Ydinvoimaloissa kuten monessa muussakin asiassa keskittyminen ja koon kasvaminen laskevat kustannuksia. Käytännössä lisensoinsointiin, rakentamiseen ja operointiin kuuluu kustannuksia jotka skaalautuvat hyvin koon mukaan. Pienreaktorit pyrkivät tästä eroon yksinkertaistamalla systeemejä ja olettamalla sarjatuotannon laskevan hintoja. Tässä vaiheessa kehityskaarta kun sarjatuotantoa ei vielä ole, on ensimmäisillä rakennettavilla voimalaitoksilla suuri este päästä markkinoille – varsinkin jos puhutaan sähköntuotannosta.

Perustava vaatimus ydinvoiman käytölle on se, että se on turvallista. Vaadittu turvallisuuden taso taataan eri tavoilla. Periaatteessa pienreaktoreilla se voisi olla yksinkertaisempaa johtuen pienestä koosta ja lämpötehosta, jolloin turvallisuuden takaavat ratkaisut olisivat myös yksinkertaisempia, luotettavampia ja halvempia kuin vastaavat isoissa reaktoreissa. Tämä kuitenkin pitää näyttää tapauskohtaisesti ja – SMR:n ollessa enemmän sateenvarjotermi heterogeenisesta joukosta reaktorikonsepteja – mitään yleispätevää on mahdoton sanoa. Tämä on myös haaste julkisessa keskustelussa.

Siinä missä sähköntuotannon taloudellisuus on pienreaktoreille haasteellinen ainakin ennen sarjatuotannon etujen tapahtumista, suora lämmön tuottaminen voi olla hyvinkin kannattavaa. Ydinvoimala on kuitenkin lämpövoimakone, jossa tuotetaan lämpöä. Sähköntuotannossa noin kolme yksikköä lämpöä käytetään yhden yksikön sähköä tuottamiseen, ja vaikka sähkö onkin lämpöä arvokkaampaa niin suhde nykyisellään ei ole tuo yksi kolmeen. Täten varsinkin lähelle käyttöä sijoitettava ydinvoimala voi olla hyvinkin edullinen tapa tuottaa vähäpäästöistä ja luotettavaa lämpöä. Lämmöntuotanto ydinvoimaloilla on tuttua ja koeteltua teknologiaa. Erityisesti kaupunkien lämmityksen osalta Kiinassa ollaan lähtemässä liikkeelle vain kaukolämmön tuotantoon tehtyjen reaktoreiden rakentamisessa. Tällaisissa sovelluksissa haasteena ovat sekä nykyiset säännökset, jotka on tehty suuria kauas asutuksesta sijoitettavia sähköä tuottavia ydinvoimaloita varten, sekä korkean turvallisuustason todentaminen.

Pienreaktorien hypesykli

Pienreaktoreilla on potentiaali olla tärkeä osa tulevaisuuden energiantuotantopalettia, mutta tällä hetkellä haasteita on sekä perinteisen innovaation kuolemanlaakson ylittämisessä (miten saada uudesta ideasta ja toimivasta prototyypistä tuote myyntiin) että institutionaalisista esteistä. Monet uudet asiat seuraavat niinkutsuttua Gartnerin hypesykliä: alkuun suuri innostus ja yliampuvat lupaukset, sitten pettymys, jonka jälkeen pitkäjänteisen työn perusteella tekninen läpimurto ja sovellukset jotka eivät välttämättä vastaa alkuperäisiä lupauksia mutta tulevat käyttöön.

undefined
Gartnerin hypesyklin vaiheet. Kuvan lähde Jeremykemp englanninkielisessa wikipediassa.

Hyvä esimerkki hypesyklistä on korkean lämpötilan kaasujäähdytteinen kuulakekoreaktori. 2000-luvun alussa ja puolivälissä siitä piti tulla uuden energiatalouden airut, jolla tuotettaisiin halvalla, turvallisesti ja runsaasti vähäpäästöistä vetyä termolyysillä puhtaan vetytalouden tarpeisiin. Sitä edistivät niin Yhdysvaltojen Next Generation Nuclear Plant (NGNP)-ohjelma kuin internetin innokkaat ydinvoimafanit. Kuitenkin, vedyntuotanto termolyysillä osoittautui silloiselle teknologialle liian kunnianhimoiseksi tavoitteetteeksi, finanssikriisi vei isojen yhtiöiden investointihalut ja liuskekaasun tuleminen romutti yhdysvaltalaiset vetytaloussuunnitelmat. Kukaan ei paljoa kuulakekoreaktoreista puhunut enää 2010-luvulle tultaessa. Kiina kuitenkin kaikessa hiljaisuudessa jatkoi reaktoriteknologian työstämistä ja NGNP-ohjelma kehitti polttoaineen designin loppuun. Tänä vuonna pitäisi HTR-PM-demolaitoksen käynnistyä. HTR-PM on suunniteltu korvaamaan ylikriittisten hiilivoimaloiden lämpökattilat sekä prosessiteollisuuden lämmöntuotantoon. Tämä kehitysvaihe on vähemmän kunnianhimoinen kuin hypevaiheen vetytalousmaalailut, mutta osoittautuessaan toimivaksi voi olla hyvinkin tärkeä teknologia Kiinan pyrkiessä pääsemään irti hiilen käytöstä.

Pienreaktoreissa on mahdollisuutensa, ja osa niistä toteutuukin. Mutta vasta jälkikäteen voidaan sanoa mitkä niistä toteutuvat, sillä tietyn teknologian läpilyönnissä ei ole kyse vain teknologian hyvyydestä vaan myös ajoituksesta, politiikasta, onnesta ja monesta muusta seikasta.

%d bloggaajaa tykkää tästä: